Configuration design problems are common in everyday life as well as engineering, with examples ranging from the selection and arrangement of furniture for a living room to the type of problem-solving used by NASA engineers to return Apollo 13 safely to Earth. There are many theoretical approaches for solving configuration design problems but few studies have examined how humans naturally solve them. This work used data-mining techniques (specifically hidden Markov models) to study the behavioral patterns shown by humans solving two distinct configuration design problems. Mining this data revealed beneficial process heuristics that are potentially generalizable to the entire class of configuration design problems. The trained models indicate that designers proceed through four procedural states, beginning in a state dominated by topology design and progressing to a final state with a focus on parameter design. The mined models also indicate that high-performing designers opportunistically tune parameters early in the process, enabling a more effective and nuanced search for good solutions. For the full article please visit ASME's Digital Collection.
Reinforcing ribs can significantly increase the stiffness of panels. In this study, we formulate a computational design method to determine the optimal position, dimensions and orientation of ribs made of stock plates and welded to a panel to maximize its stiffness. Typical applications of welded rib reinforcements are large metallic structures with low production volumes, for which other processes such as machining or stamping are either infeasible or too costly. These applications include, for example, ship hulls, fuel tanks, aircraft wing structures and linkage components in heavy machinery. To determine the optimal ribs layout, we formulate a topology optimization technique whereby a feature-based geometric representation of the rib is smoothly mapped onto a finite element mesh for analysis. This mesh remains fixed throughout the optimization, thus circumventing re-meshing upon changes in the ribs layout. Importantly, our method enforces geometric constraints to ensure manufacturability, namely that: a) ribs must remain vertical at all times to ensure a good quality weld; b) the ribs dimensions must not exceed those of available stock plates; c) ribs should not encroach the space above holes on the panel used for routing other components or for access; and d) there must be a minimum spacing between ribs to ensure adequate access for the welding gun. Ours is the first method to determine the optimal layout of welded ribs made of flat plates within a 3-dimensional design envelope that satisfies the foregoing geometric constraints. For the full article please visit ASME's Digital Collection.
|
FEATURESThis section includes brief descriptions of articles soon to be or recently published by the Journal of Mechanical Design. These featured articles highlight recent research developments and emerging trends in mechanical design. For Abstracts and Full Articles please see ASME's Digital Collection. Archives
December 2020
Categories
All
|