Power-split hybrid electric vehicles embody two electric machines in addition to the internal combustion engine, and it employs one or more planetary gear sets (PG) while disposing of the transmission. Most of the prior studies on the design of power-split hybrids focused on finding optimal powertrain configurations, which are configurations specifying the components connections. However, a selected powertrain configuration cannot be physically realized as it does not specify the components arrangements in three dimensional space. Therefore, a given powertrain configuration should be depicted into feasible kinematic diagrams, which are used to generate the three dimensional drawings used for manufacturing. Multiple kinematic diagrams can be depicted for a given powertrain configuration as each kinematic diagrams specifies the exact components arrangements in addition to their connections. In this work, an automatic approach is developed to generate all the feasible kinematic diagrams for any given power-split powertrain configuration with a single PG. First, all the possible components arrangements, i.e. positioning diagrams, are generated. Then, a set of developed feasibility rules are applied on each positioning diagram in order to filter out infeasible components arrangements. Lastly, feasible kinematic diagrams are depicted for each feasible positioning diagram, and a set of preferred design criteria are used to select arrangements that best suit the vehicle’s manufacturability, packaging, maintenance, and cost. The proposed methodology guarantees automatically finding the components arrangements that best suit the desired vehicle through the search of the entire design space. For Full Article visit ASME's Digital Collection
Hairong Wang; Shaowei Fan; Hong Liu J. Mech. Des. 2016; 139(1):012304-012304-12 doi: 10.1115/1.4034837 The force and/or motion transmissibility and the analyticity of inverse kinematics for a thumb mechanism depend on thumb configuration. This paper presents a general framework for the thumb configuration and performance evaluation in the design of dexterous robotic hand. The thumb configuration is described by the functional analysis of human thumb, and the thumb of robotic hand is generalized into fifteen configurations. A performance evaluation method is proposed based on kinetostatic and dynamic dexterity as well as workspace. The kinetostatic dexterity is based on a Jacobian matrix condition number. A dynamic dexterity measure is presented via acceleration analysis, which keeps a clear geometric meaning. The proposed method is applied to evaluate the performance of three examples, which cover thumb configurations of most existing dexterous hands. Performance evaluation results demonstrate the effectiveness of the proposed method. Using these results and the proposed performance evaluation method, meaningful design principles are presented to guide the design of the thumb configuration. For the full paper please see ASME's Digital Collection.
|
FEATURESThis section includes brief descriptions of articles soon to be or recently published by the Journal of Mechanical Design. These featured articles highlight recent research developments and emerging trends in mechanical design. For Abstracts and Full Articles please see ASME's Digital Collection. Archives
December 2020
Categories
All
|